一層石墨烯集成
圖10 可完全卷曲的納米發電機的輸出特性.
(a) 發電機的輸出極性與電流大小;(b)卷曲與非卷曲時的輸出電流
5 結論
在短短的幾年間,石墨烯以其具有的優異性能及各種潛在的應用前景,得到快速發掘和開發. 與此同時,人們需要大量高質量、結構完整的石墨烯材料. 這就要求提高或進一步完善現有制備工藝的水平,探索新的制備路徑. 微機械法顯然不能滿足未來工業化的要求,直接剝離法能制備高質量的石墨烯,但產率太低、耗時太長; 化學氣相沉積法可以制備出大面積且性能優異的石墨烯薄膜材料,但現有的工藝不成熟以及成本較高都限制了其大規模應用,因此還需進一步探索、完善. 氧化還原法雖然能夠以相對較低的成本制備出大量的石墨烯,但即使被強還原劑還原后,石墨烯的原始結構也并不能完全恢復(特別是經過共價修飾后的石墨烯),而使其電子結構及晶體的完整性均受到嚴重的破壞,一定程度上限制了其在某些領域(如精密的微電子領域)中的應用. 因此,如何大量、低成本制備出高質量的石墨烯材料仍是未來研究的一個重點. 此外,由于表面修飾能改善或豐富石墨烯的各種性能,也應該關注如何更好的修飾,特別是非共價修飾,進一步提高石墨烯各方面性能,促進其器件化、工業化、商品化的進程。
參考文獻:
[1] 黃桂榮,陳建.石墨烯的合成與應用[J].炭素技術,2009,28(1):35-39.
[2] 石墨烯.http://baike.baidu.com/view/1744041.htm.
[3]《自然》:大規模生產低成本石墨烯已成可能[J],磨料磨具通訊,200(92):30-32.
[4] 馮衛東.IBM展示運行速度最快的石墨烯晶體管[J].現代物理知識,2010,2(21):27.
[5] 英法研制出超快鎖模石墨烯激光器[J].光機電信息,2010(5):53-54.
[6] 代波,邵曉萍,等.新型碳材料——石墨烯的研究進展[J].材料導報,2010,24(2):17-21.
[7] 我國科學家率先實現基于石墨烯的各向異性刻蝕技術[J].傳感器世界,2010(9):38-39.
[8] 國家納米科學中心石墨烯納米生物傳感器研究取得突破[J].傳感器世界,2010(4):40-41.
[9] 石墨烯納米抗菌材料研究獲進展[J].材料導報,2010,24(9):24.
[10] 徐秀娟,秦金貴,李振. 石墨烯研究進展. 化學進展,2009,21(12):2559 2567.
[11] 黃毅,陳永勝. 石墨烯的功能化及其相關應用. 中國科學B 輯,2009,39(9): 887 896.
[12] 李旭,趙衛峰,陳國華. 石墨烯的制備與表征研究. 材料導報,2008,22(8):48-52.
[13] Novoselov K S,Geim A K,Morozov S V,et al. Electric field effectin atomically thin carbon films. Science,2004,306(5696):666 669.
[14] Geim A K,Novoselov K S. The rise of graphene. Nat. Mater.,2007,6(3): 183 191.
[15] Geim A K. Graphene: status and prospects. Science,2009,324(5934): 1530 1534.
[16] Wu J S,Pisula W,Mullen K. Graphenes as potential material forelectronics. Chem. Rev.,2007,107(3): 718 747.
[17] Rao C N R,Sood A k,Voggu R,et al. Some novel attributes of graphene. J. Phys. Chem. Lett.,2010,1(2): 572 580.
[18] Allen M J,Tung V C,Kaner R B. Honeycomb carbon: a review of Graphene. Chem. Rev.,2010,110(1): 132 145.
[19] Zhang Y,Tan J W,Stormer H L,et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature,2005,438: 201 204.
[20] Bolotin K I,Sikes K J,Jiang Z,et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun.,2008,146(9/10):351 355.
[21] Stankovich S,Dikin D A,Piner R D,et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45(7): 1558 1565.
[22] Hernandez Y,Nicolosi V,Lotya M,et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotech-nol.,2008,3(9): 563 568.
[23] Khan U,O'Neill A,Lotya M,et al. High-concentration solvent exfoliation of graphene. Small,2010,6(7): 864 871.
[24] Hamilton C E,Lomeda J R,Sun Z,et al. High-yield organic dispersions of unfunctionalized graphene. Nano Lett.,2009,9(10):3460 3462.
[25] Biswas S,Drzal L T. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid interface. Nano Lett.,2009,9(1): 167 172.
[26] Qian W,Hao R,Hou Y,et al. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality.Nano Res.,2009,2: 706 712.
[27] Lotya M,Hernandez Y,King P J,et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J.Am. Chem. Soc.,2009,131(10): 3611 3620.
[28] De S,King P J,Lotya M,et al. Flexible,transparent,conducting films of randomly stacked graphene from surfactant-stabilized,oxide-free graphene dispersions. Small,2010,6(3): 458 464.
[29] Englert J M,R hrl J,Schmidt C D,et al. Soluble graphene: generation of aqueous graphene solutions aided by a perylenebisimide-based bolaamphiphile. Adv. Mater.,2009,21(42): 4265 4269.
[30] Li X,Zhang G,Bai X,et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol.,2008,3(9):538 542.
[31] Janowska I,Chizari K,Ersen O,et al. Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia.Nano Res.,2010,3(2): 126 137.
[32] Pu N W,Wang C,Sung Y,et al. Production of few-layer grapheme by supercritical CO2 exfoliation of graphite. Mater. Lett.,2009,63(23): 1987 1989.
[33] Knieke C,Berger A,Voigt M,et al. Scalable production of graphene sheets by mechanical delamination. Carbon,2010,48(11):
[34] Srivastava S K,Shukla A K,Vankar V D,et al. Growth,structure and field emission characteristics of petal like carbon nano-structured thin films. Thin Solid Films,2005,492(1/2):124 130.
[35] Zhu M,Wang J,Outlaw R A,et al. Synthesis of carbon nanosheetsand carbon nanotubes by radio frequency plasma enhanced chemical vapor deposition. Diam. Relat. Mater.,2007,16(2): 196 201.
[36] Wang J,Zhu M,Outlaw R A,et al . Synthesis of carbon nanosheetsby inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon,2004,42(14): 28672872.
[37] Berger C,Song Z,Li X,et al. Electronic confinement and coherence in patterned epitaxial graphene. Science,2006,312(5777):1191 1196.
[38] Berger C,Song Z,Li T,et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B,2004,108(52): 19912 19916.
[39] Kim K S,Zhao Y,Jang H,et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,2009,457(7230): 706 710.
[40] Lee Y,Bae S,Jang H,et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett.,2010,10(2): 490 493.
[41] Reina A,Jia X,Ho J,et al. Large area,few-layer graphene films onarbitrary substrates by chemical vapor deposition. Nano Lett.,2009,9(1): 30 35.
[42] Faugeras C,Faugeras B,Orlita M,et al. Thermal conductivity of graphene in corbino membrane geometry. ACS Nano,2010,4(4):1889 1892.
[43] Sutter P W,Flege J I,Sutter E A. Epitaxial graphene on ruthenium.Nat. Mater.,2008,7(5): 406 411.
[44] 劉忠良. 碳化硅薄膜的外延生長、結構表征與石墨烯的制備. 合肥: 中國科學技術大學博士論文,2009.
[45] Compton O C,Nguyen S T. Graphene oxide,highly reduced graphene oxide and graphene: versatile building blocks for carbonbased materials. Small,2010,6(6): 711 723.
[46] Dreyer D R,Park S,Bielawski C W,et al. The chemistry of graphene oxide. Chem. Soc. Rev.,2010,39(1): 228 240.
[47] Tsuyoshi N,Yoshiaki M. Formation process and structure of graphite oxide. Carbon,1994,32 (3): 469 475.
[48] Staudenmaier L. Verfahren zur darstellung der graphits ure. Ber. Dt.Sch. Chem. Ges.,1898,31(2): 1481 1487.
[49] Brodie B C. Sur le poids atomique du graphite. Ann. Chim. Phys.,1860,59: 466 472.
[50] Hummers W,Offeman R. Preparation of graphitic oxide. J. Am.Chem. Soc.,1958,80(6): 1339.
[51] Chattopadhyay J,Mukherjee A,Billups W E,et al. Graphite epoxide. J. Am. Chem. Soc.,2008,130(16): 5414 5415.
[52] Wissler M. Graphite and carbon powders for electrochemical applications. J. Power Sources,2006,156(2): 142 150
作者:無機光電0901 3090707020 黃飛飛