電子設計技術的核心就是EDA技術,EDA是指以計算機為工作平臺,融合應用電子技術、計算機技術、智能化技術最新成果而研制成的電子CAD通用軟件包,主要能輔助進行三方面的設計工作,即IC設計、電子電路設計和PCB設計。
EDA技術已有30年的發展歷程,大致可分為三個階段。70年代為計算機輔助設計(CAD)階段,人們開始用計算機輔助進行IC版圖編輯、PCB布局布線,取代了手工操作。80年代為計算機輔助工程(CAE)階段。與CAD相比,CAE除了有純粹的圖形繪制功能外,又增加了電路功能設計和結構設計,并且通過電氣連接網絡表將兩者結合在一起,實現了工程設計。CAE的主要功能是:原理圖輸人,邏輯仿真,電路分析,自動布局布線,PCB后分析。90年代為電子系統設計自動化(EDA)階段。
EDA技術的基本特征
EDA代表了當今電子設計技術的最新發展方向,它的基本特征是:設計人員按照“自頂向下”的設計方法,對整個系統進行方案設計和功能劃分,系統的關鍵電路用一片或幾片專用集成電路(ASIC)實現,然后采用硬件描述語言(HDL)完成系統行為級設計,最后通過綜合器和適配器生成最終的目標器件,這樣的設計方法被稱為高層次的電子設計方法。下面介紹與EDA基本特征有關的幾個概念。
1.“自頂向下”的設計方法。10年前,電子設計的基本思路還是選用標準集成電路“自底向上”地構造出一個新的系統,這樣的設計方法就如同一磚一瓦建造金字塔,不僅效率低、成本高而且容易出錯。
高層次設計是一種“自頂向下”的全新設計方法,這種設計方法首先從系統設計人手,在頂層進行功能方框圖的劃分和結構設計。在方框圖一級進行仿真、糾錯,并用硬件描述語言對高層次的系統行為進行描述,在系統一級進行驗證。然后,用綜合優化工具生成具體門電路的網絡表,其對應的物理實現級可以是印刷電路板或專用集成電路。由于設計的主要仿真和調試過程是在高層次上完成的,這既有利于早期發現結構設計上的錯誤,避燃計工作的浪費,又減少了邏輯功能仿真的工作量,提高了設計的一次成功率。
2.ASIC設計?,F代電子產品的復雜度日益提高,一個電子系統可能由數萬個中小規模集成電路構成,這就帶來了體積大、功耗大、可靠性差的問題。解決這一問題的有效方法就是采用ASIC芯片進行設計。ASIC按照設計方法的不同可分為全定制ASIC、半定制ASC和可紀程ASIC(也稱為可編程邏輯器件)。
設計全定制ASIC芯片時,設計師要定義芯片上所有晶體管的幾何圖形和工藝規則,最后將設計結果交由m廠家去進行格模制造,做出產品。這種設計方法的優點是芯片可以獲得最優的性能,即面積利用率高、速度快、功耗低,而缺點是開發周期長,費用高,只適合大批量產品開發。
半定制ASIC芯片的版圖設計方法分為門陣列設計法和標準單元設計法,這兩種方法都是約束性的設計方法,其主要目的就是簡化設計,以犧牲芯片性能為代價來縮短開發時間。
可編程邏輯芯片與上述掩模ASIC的不同之處在于:設計
人員完成版圖設計后,在實驗室內就可以燒制出自己的芯片,
無須IC廠家的參與,大大縮短了開發周期。
可編程邏輯器件自70年代以來,經歷了PAL、GALGPLD、FPGA幾個發展階段,其中CPLD/FPGA高密度可編程邏輯器件,目前集成度已高達200萬門/片,它將格模ASC集成度高的優點和可編程邏輯器件設計生產方便的特點結合在一起,特別適合于樣品研制或小批量產品開發,使產品能以最快的速度上市,而當市場擴大時,它可以很容易地轉由掩模ASIC實現,因此開發風險也大為降低。
上述ASIC芯片,尤其是CPLD/FPGA器件,已成為現代高層次電子設計方法的實現載體。
EDA技術已有30年的發展歷程,大致可分為三個階段。70年代為計算機輔助設計(CAD)階段,人們開始用計算機輔助進行IC版圖編輯、PCB布局布線,取代了手工操作。80年代為計算機輔助工程(CAE)階段。與CAD相比,CAE除了有純粹的圖形繪制功能外,又增加了電路功能設計和結構設計,并且通過電氣連接網絡表將兩者結合在一起,實現了工程設計。CAE的主要功能是:原理圖輸人,邏輯仿真,電路分析,自動布局布線,PCB后分析。90年代為電子系統設計自動化(EDA)階段。
EDA技術的基本特征
EDA代表了當今電子設計技術的最新發展方向,它的基本特征是:設計人員按照“自頂向下”的設計方法,對整個系統進行方案設計和功能劃分,系統的關鍵電路用一片或幾片專用集成電路(ASIC)實現,然后采用硬件描述語言(HDL)完成系統行為級設計,最后通過綜合器和適配器生成最終的目標器件,這樣的設計方法被稱為高層次的電子設計方法。下面介紹與EDA基本特征有關的幾個概念。
1.“自頂向下”的設計方法。10年前,電子設計的基本思路還是選用標準集成電路“自底向上”地構造出一個新的系統,這樣的設計方法就如同一磚一瓦建造金字塔,不僅效率低、成本高而且容易出錯。
高層次設計是一種“自頂向下”的全新設計方法,這種設計方法首先從系統設計人手,在頂層進行功能方框圖的劃分和結構設計。在方框圖一級進行仿真、糾錯,并用硬件描述語言對高層次的系統行為進行描述,在系統一級進行驗證。然后,用綜合優化工具生成具體門電路的網絡表,其對應的物理實現級可以是印刷電路板或專用集成電路。由于設計的主要仿真和調試過程是在高層次上完成的,這既有利于早期發現結構設計上的錯誤,避燃計工作的浪費,又減少了邏輯功能仿真的工作量,提高了設計的一次成功率。
2.ASIC設計?,F代電子產品的復雜度日益提高,一個電子系統可能由數萬個中小規模集成電路構成,這就帶來了體積大、功耗大、可靠性差的問題。解決這一問題的有效方法就是采用ASIC芯片進行設計。ASIC按照設計方法的不同可分為全定制ASIC、半定制ASC和可紀程ASIC(也稱為可編程邏輯器件)。
設計全定制ASIC芯片時,設計師要定義芯片上所有晶體管的幾何圖形和工藝規則,最后將設計結果交由m廠家去進行格模制造,做出產品。這種設計方法的優點是芯片可以獲得最優的性能,即面積利用率高、速度快、功耗低,而缺點是開發周期長,費用高,只適合大批量產品開發。
半定制ASIC芯片的版圖設計方法分為門陣列設計法和標準單元設計法,這兩種方法都是約束性的設計方法,其主要目的就是簡化設計,以犧牲芯片性能為代價來縮短開發時間。
可編程邏輯芯片與上述掩模ASIC的不同之處在于:設計
人員完成版圖設計后,在實驗室內就可以燒制出自己的芯片,
無須IC廠家的參與,大大縮短了開發周期。
可編程邏輯器件自70年代以來,經歷了PAL、GALGPLD、FPGA幾個發展階段,其中CPLD/FPGA高密度可編程邏輯器件,目前集成度已高達200萬門/片,它將格模ASC集成度高的優點和可編程邏輯器件設計生產方便的特點結合在一起,特別適合于樣品研制或小批量產品開發,使產品能以最快的速度上市,而當市場擴大時,它可以很容易地轉由掩模ASIC實現,因此開發風險也大為降低。
上述ASIC芯片,尤其是CPLD/FPGA器件,已成為現代高層次電子設計方法的實現載體。