物質的物相和相變是物理學領域最重要的科學問題之一,相關研究曾多次獲得諾貝爾獎。四十多年前Robert B. Griffiths從理論上預測,無序效應會定性地改變物相和相變臨界點的行為,特別是臨界點的動力學臨界指數將趨于無窮大,這種現象被稱作Griffiths奇異性。隨著時間推移,這一預測現已拓展到量子相變形成了量子Griffiths奇異性理論。所謂量子相變,是指在絕對零度下系統處于量子基態時隨著參數變化而發生的相變。然而實驗上要直接觀測到動力學臨界指數的發散行為,即量子Griffiths奇異性,非常困難。超導體作為一種重要的量子物質和物相,其量子相變與量子臨界點現象已得到學術界的廣泛關注,但直到最近仍未在超導中發現量子Griffiths奇異性行為。
二維超導體,因其中量子漲落或熱力學漲落帶來的諸多新奇現象,以及在無耗散或低耗散的電子學方面的潛在應用價值,已成為超導領域的重要研究方向。2015年美國凝聚態物理最高獎Buckley獎頒發給四位物理學家,以表彰他們在二維超導體系中發現超導-絕緣體相變現象,該相變被認為是量子相變的范例。超導-絕緣體相變早在二十多年前就被報道,隨后研究者發現了性質類似的超導-金屬相變,但如今仍有不少實驗或理論相互間有所沖突和爭議。對于二維超導中磁場調制的超導-絕緣體(或金屬)相變,早期發現不同溫度下電阻隨磁場的響應曲線會交于一點,該點被稱為量子臨界點,對應的臨界指數可以從不同溫度下電阻-磁場曲線的標度行為得到,這個臨界指數與樣品的細節無關是一個確定的數值。然而近期有實驗報道在不同溫度區間觀測到兩個不同的量子臨界點及不同的臨界指數。
最近北京大學物理學院量子材料科學中心王健研究組,與中心謝心澄教授、林熙研究員、王垡研究員,以及清華大學的薛其坤院士和馬旭村研究員等人合作,在三個原子層厚(小于1納米厚)的Ga(鎵)薄膜中發現了二維超導和超導-金屬相變行為。實驗中的Ga超薄膜是通過分子束外延生長在GaN(氮化鎵)襯底上,并采用100納米量級厚度的無定形硅作為覆蓋層進行保護。研究人員通過最低到25mK的極低溫精密測量發現,Ga超導薄膜中超導-金屬相變對應的臨界點既不是以前報道的一個臨界點也不是近期報道的兩個臨界點,而是隨著溫度變化形成了一條臨界線。相應的臨界指數在臨界線上連續變化,在趨近零溫量子臨界點時會發散,而不是通常認知的固定值。因此,傳統的超導量子相變理論無法解釋該實驗結果。分析表明該相變正是理論上預測已久的量子Griffiths奇異性。這是首次在低維體系以及超導體系中發現和證實量子Griffiths奇異性,并且有可能是對超導-金屬相變的具有普適性的物理解釋。這項工作不僅是發現了一種新的量子相變,而且對超導(包括高溫超導)等量子材料體系中量子臨界行為的理解提供了新的思路。
相關文章于2015年10月15日提前在線發表在Science上(Science DOI: 10.1126/science.aaa7154)。北大謝心澄教授建議了在極低溫下觀測量子相變行為的實驗,并與劉海文、王垡負責此項工作的理論部分。北大王健研究員、林熙研究員與清華馬旭村研究員為文章并列通訊作者。北大博士生邢穎、付海龍、助理研究員劉海文與中科院物理所博士生張慧敏為文章并列第一作者。
上述研究得到國家重大科學研究計劃、國家自然科學基金、中組部“青年千人”計劃、高等學校博士學科點專項科研基金以及量子物質科學協同創新中心等項目經費的資助。
三個原子層厚的鎵薄膜超導與臨界指數在靠近量子相變點(絕對零度)時的發散行為