本書側重系統級描述,綜合了無線通信電路系統描述、器件特性及單元電路分析,討論最新架構、電路和器件。第1和第2章首先介紹射頻電子學基本概念和術語;第3章和第4章討論通信系統層的建模、檢測、多路存取等技術及無線標準;第5章討論無線前端收發器的結構和集成電路的實現,第6章到第9章詳細討論了低噪聲放大器和混頻器、振蕩器、頻率綜合器和功放器電路原理和分析方法。
CHAPTER 1 INTRODUCTION TO RF AND WIRELESS TECHNOLOGY
1.1 A Wireless World
1.2 RF Design Is Challenging
1.3 The Big Picture
References
CHAPTER 2 BASIC CONCEPTS IN RF DESIGN
2.1 General Considerations
2.1.1 Units in RF Design
2.1.2 Time Variance
2.1.3 Nonlinearity
2.2 Effects of Nonlinearity
2.2.1 Harmonic Distortion
2.2.2 Gain Compression
2.2.3 Cross Modulation
2.2.4 Intermodulation
2.2.5 Cascaded Nonlinear Stages
2.2.6 AM/PM Conversion
2.3 Noise
2.3.1 Noise as a Random Process
2.3.2 Noise Spectrum
2.3.3 Effect of Transfer Function on Noise
2.3.4 Device Noise
2.3.5 Representation of Noise in Circuits
2.4 Sensitivity and Dynamic Range
2.4.1 Sensitivity
2.4.2 Dynamic Range
2.5 Passive Impedance Transformation
2.5.1 Quality Factor
2.5.2 Series-to-Parallel Conversion
2.5.3 Basic Matching Networks
2.5.4 Loss in Matching Networks
2.6 Scattering Parameters
2.7 Analysis of Nonlinear Dynamic Systems
2.7.1 Basic Considerations
2.8 Volterra Series
2.8.1 Method of Nonlinear Currents
References
Problems
CHAPTER 3 COMMUNICATION CONCEPTS
3.1 General Considerations
3.2 Analog Modulation
3.2.1 Amplitude Modulation
3.2.2 Phase and Frequency Modulation
3.3 Digital Modulation
3.3.1 Intersymbol Interference
3.3.2 Signal Constellations
3.3.3 Quadrature Modulation
3.3.4 GMSK and GFSK Modulation
3.3.5 Quadrature Amplitude Modulation
3.3.6 Orthogonal Frequency Division Multiplexing
3.4 Spectral Regrowth
3.5 Mobile RF Communications
3.6 Multiple Access Techniques
3.6.1 Time and Frequency Division Duplexing
3.6.2 Frequency-Division Multiple Access
3.6.3 Time-Division Multiple Access
3.6.4 Code-Division Multiple Access
3.7 Wireless Standards
3.7.1 GSM
3.7.2 IS-95 CDMA
3.7.3 Wideband CDMA
3.7.4 Bluetooth
3.7.5 IEEE802.11a/b/g
3.8 Appendix I: Differential Phase Shift Keying
References
Problems
CHAPTER 4 TRANSCEIVER ARCHITECTURES
4.1 General Considerations
4.2 Receiver Architectures
4.2.1 Basic Heterodyne Receivers
4.2.2 Modern Heterodyne Receivers
4.2.3 Direct-Conversion Receivers
4.2.4 Image-Reject Receivers
4.2.5 Low-IF Receivers
4.3 Transmitter Architectures
4.3.1 General Considerations
4.3.2 Direct-Conversion Transmitters
4.3.3 Modern Direct-Conversion Transmitters
4.3.4 Heterodyne Transmitters
4.3.5 Other TX Architectures
4.4 OOK Transceivers
References
Problems
CHAPTER 5 LOW-NOISE AMPLIFIERS
5.1 General Considerations
5.2 Problem of Input Matching
5.3 LNA Topologies
5.3.1 Common-Source Stage with Inductive Load
5.3.2 Common-Source Stage with Resistive Feedback
5.3.3 Common-Gate Stage
5.3.4 Cascode CS Stage with Inductive Degeneration
5.3.5 Variants of Common-Gate LNA
5.3.6 Noise-Cancelling LNAs
5.3.7 Reactance-Cancelling LNAs
5.4 Gain Switching
5.5 Band Switching
5.6 High-IP2 LNAs
5.6.1 Differential LNAs
5.6.2 Other Methods of IP2 Improvement
5.7 Nonlinearity Calculations
5.7.1 Degenerated CS Stage
5.7.2 Undegenerated CS Stage
5.7.3 Differential and Quasi-Differential Pairs
5.7.4 Degenerated Differential Pair
References
Problems
CHAPTER 6 MIXERS
6.1 General Considerations
6.1.1 Performance Parameters
6.1.2 Mixer Noise Figures
6.1.3 Single-Balanced and Double-Balanced Mixers
6.2 Passive Downconversion Mixers
6.2.1 Gain
6.2.2 LO Self-Mixing
6.2.3 Noise
6.2.4 Input Impedance
6.2.5 Current-Driven Passive Mixers
6.3 Active Downconversion Mixers
6.3.1 Conversion Gain
6.3.2 Noise in Active Mixers
6.3.3 Linearity
6.4 Improved Mixer Topologies
6.4.1 Active Mixers with Current-Source Helpers
6.4.2 Active Mixers with Enhanced Transconductance
6.4.3 Active Mixers with High IP2
6.4.4 Active Mixers with Low Flicker Noise
6.5 Upconversion Mixers
6.5.1 Performance Requirements
6.5.2 Upconversion Mixer Topologies
References
Problems
CHAPTER 7 PASSIVE DEVICES
7.1 General Considerations
7.2 Inductors
7.2.1 Basic Structure
7.2.2 Inductor Geometries
7.2.3 Inductance Equations
7.2.4 Parasitic Capacitances
7.2.5 Loss Mechanisms
7.2.6 Inductor Modeling
7.2.7 Alternative Inductor Structures
7.3 Transformers
7.3.1 Transformer Structures
7.3.2 Effect of Coupling Capacitance
7.3.3 Transformer Modeling
7.4 Transmission Lines
7.4.1 T-Line Structures
7.5 Varactors
7.6 Constant Capacitors
7.6.1 MOS Capacitors
7.6.2 Metal-Plate Capacitors
References
Problems
CHAPTER 8 OSCILLATORS
8.1 Performance Parameters
8.2 Basic Principles
8.2.1 Feedback View of Oscillators
8.2.2 One-Port View of Oscillators
8.3 Cross-Coupled Oscillator
8.4 Three-Point Oscillators
8.5 Voltage-Controlled Oscillators
8.5.1 Tuning Range Limitations
8.5.2 Effect of Varactor Q
8.6 LC VCOs with Wide Tuning Range
8.6.1 VCOs with Continuous Tuning
8.6.2 Amplitude Variation with Frequency Tuning
8.6.3 Discrete Tuning
8.7 Phase Noise
8.7.1 Basic Concepts
8.7.2 Effect of Phase Noise
8.7.3 Analysis of Phase Noise: Approach I
8.7.4 Analysis of Phase Noise: Approach II
8.7.5 Noise of Bias Current Source
8.7.6 Figures of Merit of VCOs
8.8 Design Procedure
8.8.1 Low-Noise VCOs
8.9 LO Interface
8.10 Mathematical Model of VCOs
8.11 Quadrature Oscillators
8.11.1 Basic Concepts
8.11.2 Properties of Coupled Oscillators
8.11.3 Improved Quadrature Oscillators
8.12 Appendix I: Simulation of Quadrature Oscillators
References
Problems
CHAPTER 9 PHASE-LOCKED LOOPS
9.1 Basic Concepts
9.1.1 Phase Detector
9.2 Type-I PLLs
9.2.1 Alignment of a VCO’s Phase
9.2.2 Simple PLL
9.2.3 Analysis of Simple PLL
9.2.4 Loop Dynamics
9.2.5 Frequency Multiplication
9.2.6 Drawbacks of Simple PLL
9.3 Type-II PLLs
9.3.1 Phase/Frequency Detectors
9.3.2 Charge Pumps
9.3.3 Charge-Pump PLLs
9.3.4 Transient Response
9.3.5 Limitations of Continuous-Time Approximation
9.3.6 Frequency-Multiplying CPPLL
9.3.7 Higher-Order Loops
9.4 PFD/CP Nonidealities
9.4.1 Up and Down Skew and Width Mismatch
9.4.2 Voltage Compliance
9.4.3 Charge Injection and Clock Feedthrough
9.4.4 Random Mismatch between Up and Down Currents
9.4.5 Channel-Length Modulation
9.4.6 Circuit Techniques
9.5 Phase Noise in PLLs
9.5.1 VCO Phase Noise
9.5.2 Reference Phase Noise
9.6 Loop Bandwidth
9.7 Design Procedure
9.8 Appendix I: Phase Margin of Type-II PLLs
References
Problems
CHAPTER 10 INTEGER-N FREQUENCY SYNTHESIZERS
10.1 General Considerations
10.2 Basic Integer-N Synthesizer
10.3 Settling Behavior
10.4 Spur Reduction Techniques
10.5 PLL-Based Modulation
10.5.1 In-Loop Modulation
10.5.2 Modulation by Offset PLLs
10.6 Divider Design
10.6.1 Pulse Swallow Divider
10.6.2 Dual-Modulus Dividers
10.6.3 Choice of Prescaler Modulus
10.6.4 Divider Logic Styles
10.6.5 Miller Divider
10.6.6 Injection-Locked Dividers
10.6.7 Divider Delay and Phase Noise
References
Problems
CHAPTER 11 FRACTIONAL-N SYNTHESIZERS
11.1 Basic Concepts
11.2 Randomization and Noise Shaping
11.2.1 Modulus Randomization
11.2.2 Basic Noise Shaping
11.2.3 Higher-Order Noise Shaping
11.2.4 Problem of Out-of-Band Noise
11.2.5 Effect of Charge Pump Mismatch
11.3 Quantization Noise Reduction Techniques
11.3.1 DAC Feedforward
11.3.2 Fractional Divider
11.3.3 Reference Doubling
11.3.4 Multiphase Frequency Division
11.4 Appendix I: Spectrum of Quantization Noise
References
Problems
CHAPTER 12 POWER AMPLIFIERS
12.1 General Considerations
12.1.1 Effect of High Currents
12.1.2 Efficiency
12.1.3 Linearity
12.1.4 Single-Ended and Differential PAs
12.2 Classification of Power Amplifiers
12.2.1 Class A Power Amplifiers
12.2.2 Class B Power Amplifiers
12.2.3 Class C Power Amplifiers
12.3 High-Efficiency Power Amplifiers
12.3.1 Class A Stage with Harmonic Enhancement
12.3.2 Class E Stage
12.3.3 Class F Power Amplifiers
12.4 Cascode Output Stages
12.5 Large-Signal Impedance Matching
12.6 Basic Linearization Techniques
12.6.1 Feedforward
12.6.2 Cartesian Feedback
12.6.3 Predistortion
12.6.4 Envelope Feedback
12.7 Polar Modulation
12.7.1 Basic Idea
12.7.2 Polar Modulation Issues
12.7.3 Improved Polar Modulation
12.8 Outphasing
12.8.1 Basic Idea
12.8.2 Outphasing Issues
12.9 Doherty Power Amplifier
12.10 Design Examples
12.10.1 Cascode PA Examples
12.10.2 Positive-Feedback PAs
12.10.3 PAs with Power Combining
12.10.4 Polar Modulation PAs
12.10.5 Outphasing PA Example
References
Problems
CHAPTER 13 TRANSCEIVER DESIGN EXAMPLE
13.1 System-Level Considerations
13.1.1 Receiver
13.1.2 Transmitter
13.1.3 Frequency Synthesizer
13.1.4 Frequency Planning
13.2 Receiver Design
13.2.1 LNA Design
13.2.2 Mixer Design
13.2.3 AGC
13.3 TX Design
13.3.1 PA Design
13.3.2 Upconverter
13.4 Synthesizer Design
13.4.1 VCO Design
13.4.2 Divider Design
13.4.3 Loop Design
References
Problems
INDEX